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Online Heterogeneous Streaming Feature Selection
without Feature Type Information

Peng Zhou, Yunyun Zhang, Zhaolong Ling, Yuanting Yan, Shu Zhao, and Xindong Wu, Fellow, IEEE

Abstract—Feature selection aims to select an optimal minimal feature subset from the original datasets and has become an

indispensable preprocessing component before data mining and machine learning, especially in the era of big data. However,
features may be generated dynamically and arrive individually over time in practice, which we call streaming features. Most
existing streaming feature selection methods assume that all dynamically generated features are the same type or assume we can
know the feature type for each new arriving feature in advance, but this is unreasonable and unrealistic. Therefore, this paper
first studies a practical issue of Online Heterogeneous Streaming Feature Selection without the feature type information before
learning, named OHSF'S. Specifically, we first model the streaming feature selection issue as a minimax problem. Then, in terms
of MIC (Maximal Information Coefficient), we derive a new metric M ICgqin to determine whether a new streaming feature
should be selected. To speed up the efficiency of OHSFS, we present the metric M ICg,, that can directly discard low correlation
features. Finally, extensive experimental results indicate the effectiveness of OHSFS. Moreover, OHSF'S is nonparametric and
does not need to know the feature type before learning, which aligns with practical application needs.

Index Terms—Online Feature Selection, Streaming Feature, Heterogeneous Feature, Maximal Information Coefficient

1 Introduction

eature selection aims to select the smallest sized subset of
F the original feature space that preserves the best salient
features required from the dataset [1, 2]. With the explosive
growth of data volume and dimension, feature selection has
become an indispensable data preprocessing technique that is
widely used in data mining, machine learning, and other fields
[3]. By removing noisy, irrelevant, and redundant features,
machine learning can gain significant benefits from feature
selection, such as better performance, less running time, and
better understandability [4, 5].

Traditional feature selection assumes that the entire fea-
ture space can be fully presented to the learner before learning
[6]. To select an optimal feature subset, feature selection
algorithms tend to traverse the entire dataset multiple times.
However, in real-world applications, such as image analysis
[7] and Martian crater detection [8], not all features can be
acquired before learning. Features are generated and arrive
one by one over time, while the number of samples remains
fixed, which we call streaming features [9]. For example,
because the high cost of conducting wet-lab experiments in
bioinformatics, acquiring the complete set of features for every
training instance is prohibitive, and it is impossible to wait for
a complete set of features [10]. Besides, for the product to be
processed in an industrial production line, it always requires
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multiple steps by different devices which dynamically generate
different streaming features over time [11]. Online streaming
feature selection that deals with feature streams in an online
manner has attracted extensive attention recently [12].

Feature selection methods can be broadly categorized as
the filter, wrapper, and embedded according to different selec-
tion strategies [13]. Filter methods select the features in terms
of specific feature measurements, while wrapper methods use
predefined classifiers as a black box to evaluate the selected
features. Embedded methods perform feature selection in
the process of model construction. Unlike traditional feature
selection methods, there are two main challenges for streaming
feature selection: (1) the entire feature space is unknown or
even infinite, (2) and we must decide whether to retain or
discard the new arrival feature on the fly [14]. Due to storage
space limitations, once a new arriving feature is discarded, we
cannot use it again. Therefore, most existing online streaming
feature selection methods apply a filter model to select the
optimal streaming features [15]. In other words, these methods
always need to design some measurements to calculate the
association between features.

Generally speaking, the feature type of the target dataset
can be categorized into homogeneous features and heteroge-
neous features [16, 17]. For example, characteristics in medical
diagnostic data may include a patient’s gender, age, weight,
and blood pressure, where the gender type is a categorical
value, the age is an integer value, and the weight and blood
pressure are numerical values. Existing streaming feature
selection methods either design for single feature type or
provide two versions of algorithms for both categorical and
numerical features, respectively [12]. For instance, based on
penalized likelihood ratio, mutual information, and classical
rough set theory, a-investing [18], GFSSF (Group Feature
Selection with Streaming Features) [19], and OS-NRRSARA-
SA [20] are designed for categorical features respectively. In
terms of neighborhood rough set theory, K-OFSD (Online
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Feature Selection based on the Dependency in K nearest
neighbors) [21] and OFS-A3M [22] are proposed for numerical
features only. Besides, based on statistical tests, informa-
tion theory, and Fisher’s Z-test, OSFS (Online Streaming
Feature Selection) [9], SAOLA (Scalable and Accurate On-
Line Approach) [23], SFS-FI (Streaming Feature Selection
considering Feature Interaction) [14], OSSFS-DD (Online
Scalable Streaming Feature Selection via Dynamic Decision)
[24] provide two versions of algorithms for both categorical
and numerical features respectively. For mixed feature space,
fuzzy rough set-based methods [25, 26] or hybrid metrics
based methods [27, 28] were proposed. All these methods
mentioned above implicitly assume that we can know the
attribute type of each feature before learning. However, in
real-world applications, the streaming features are arrived in a
random order. Therefore, it is unreasonable and unrealistic to
know all the attribute types for the infinite streaming features
in advance.
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Fig. 1: Hlustration of the problem of online heterogeneous
streaming feature selection without the information of feature

type.

Retain
or
Discard?

Retain Discard

Add f; into S

As shown in Fig. 1, streaming features are being generated
and arriving one by one as time goes on (from ¢; to tx). Sup-
pose at each timestamp ¢, the new arriving streaming feature
is f;. Filter model streaming feature selection methods usually
use specific measurements to calculate the correlation between
features. Usually, streaming feature selection methods need
to measure the correlation between a new arriving feature f;
and the class label C, and the correlation between f; and
each feature f’ in the selected feature subset S. However, the
streaming features may arrive in a random order. If we cannot
know the feature type of the next arriving feature, how can
we measure the correlations and decide whether to retain or
discard this streaming feature? Motivated by this, this paper
firstly studies a practical issue of online feature selection for
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the unknown type heterogeneous streaming features.

MIC (Maximal Information Coefficient), published in
Science in 2011, aimed to identify interesting associations
between pairs of variables for both functional and not [29].
MIC can measure the dependence between features and has
two heuristic properties: generality and equitability. If a
relationship exists between two variables, a grid can be drawn
on the scatterplot of the two variables that partitions the
data to encapsulate that relationship. MIC can examine all
potentially interesting relationships in a dataset and ignore
the feature types. Therefore, this paper applies MIC to
measure the correlation between unknown type streaming
features.

Specifically, we firstly pay attention to the issue of online
heterogeneous streaming feature selection and give a formal
definition of it. Based on information theory, we model the
streaming feature selection issue as a minimax problem and
propose two metrics to determine whether the new arriving
feature should be selected. We theoretically demonstrate the
validity of these two metrics. Based on these two new metrics,
we propose a new online adaptive feature selection method for
unknown type heterogeneous streaming features. The main
contributions of this paper are as follows:

o We first present the exciting and practical issue of online
heterogeneous streaming feature selection without the
feature type information before learning and formally
modeling it as a minimax problem.

e In terms of MIC, we derive a new metric MI1Cqquin
that can be used to determine whether a new unknown
type streaming feature should be selected. To speed up
the efficiency of online feature selection, we present the
metric M1C¢,, that can directly discard new arriving
features with low correlation. Meanwhile, we theoreti-
cally demonstrate the validity of these two metrics.

o Based on these two new metrics, we propose a new On-
line Heterogeneous Streaming Feature Selection method,
named OHSFS. OHSFS is nonparametric and does not
need to know the feature type of each streaming feature
in advance, which is in line with practical application
needs.

o Extensive experiments conducted on twenty-one real-
world datasets and compared with four state-of-the-art
traditional heterogeneous feature selection algorithms
and five online streaming feature selection approaches
indicate the effectiveness of OHSFS.

This new online heterogeneous streaming features method
was first introduced in our conference paper [30]. In compari-
son with the preliminary conference version, we have improve-
ments in the following three aspects: (1) We systematically
elaborate on background, motivation, and related work from
the heterogeneous streaming feature perspective; (2) We add
two new detailed proofs (Proofs 1 and 2) to demonstrate
the validity of two metrics MICgqin and MICc,,, which
ensures the effectiveness of our new approach theoretically;
(3) In experiments, we add more datasets and apply two
new classifiers, Ensemble Learning and Neural Network, to
improve the justification. Meanwhile, for each competing algo-
rithm, we provide a more detailed analysis of the advantages
and disadvantages of the comparison algorithms. In sum, the
novelty of this manuscript lines in two aspects. First, at the
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problem level, our new method aims to handle the issue
of online heterogeneous streaming feature selection without
feature type information. Second, at the algorithmic level,
our proposed method can uniformly process new streaming
features (numerical or categorical) without requiring their
feature types at first. Therefore, OHSFS is in line with
practical application needs for big data.

The rest of this article is organized as follows. In Section 2,
we describe related work. In Section 3, the formal definition of
the problem, the relevant theoretical knowledge of MIC, and
a new method for heterogeneous streaming features without
the feature type information is proposed. Section IV gives
the experimental analysis. Finally, Section V gives a brief
conclusion.

2 Related Work

Feature selection has been studied for many years and a large
number of excellent algorithms have been proposed [6, 31, 32].
According to different data generation, we can divide feature
selection into two categories: traditional feature selection for
static data and online streaming feature selection for stream
data [3].

2.1 Traditional Feature Selection Methods

According to the feature type of a dataset, feature selection
methods can be divided into homogeneous (categorical or
numerical) feature selection and heterogeneous (including
both categorical and numerical ) feature selection [16, 17, 33].
Most traditional filter model feature selection algorithms
are designed for a single feature type, i.e., categorical or
numerical. For example, MI [34] and classical rough set
dependence degree [35] are two commonly used measurements
for categorical feature selection. The Laplacian score [36]
and Fisher score [37] are usually used in feature selection
for numerical data. These measurements aim to calculate the
correlation between the conditional feature and the class label
and select the top features according to their scores.

In practical applications, features may be gathered in
mixed types. That is, there are both categorical and nu-
merical features in the dataset. Therefore, some traditional
mixed feature selection algorithms are proposed to deal with
heterogeneous feature space. Specifically, Zhang et al. [27]
constructed a new information entropy measurement method
based on fuzzy rough set theory for the mixed feature selection
problem and proposed a new filter-wrapper model feature
selection algorithm according to this measurement criterion.
Yuan et al. [25] proposed the FRUAR algorithm for the fea-
ture selection problem of unsupervised mixed data. FRUAR
is based on fuzzy rough sets to define the importance of a
single feature and then designed a heuristic search algorithm
to find the optimal feature subset. Yuan et al. [26] solved
the feature interaction problem in the feature selection of
unsupervised imbalanced mixed data and proposed a measure
of uncertainty based on fuzzy complementary entropy, named
EUIAR. In the work of Kim et al. [38], the feature space
is divided into two subspaces according to the proposed
method, corresponding to the numerical feature space and the
categorical feature space respectively, and then the subspaces
are sorted respectively, and finally the classification error rate
is used to select the most useful feature subset. Wang et al. [39]
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designed an efficient hybrid feature selection algorithm based
on the idea of feature space decomposition and fusion for the
feature selection problem on large-scale hybrid feature space
datasets. Inspired by the spectral feature selection method,
S Solorio-Fernandez et al. [40] proposed a new unsupervised
filter feature selection method that can handle mixed features
by combining the kernel function and a new spectral function-
based feature measurement method. The attribute evaluation
criteria of maximal information, minimal redundancy, and
maximal interactivity are developed based on the proposed
uncertainty measure. For mixed feature type datasets, mixed
feature selection methods use different metrics to decrease
the information loss in the feature space. However, these
methods require complete knowledge of the feature space
before learning.

Besides, many new traditional feature selection algorithms
have been proposed. For text classification tasks, Labani et
al. [41] proposed the MORDC algorithm, which focuses on
searching in the solution space using a multi-objective evolu-
tionary framework. Meanwhile, many population-based opti-
mization methods have been proposed and successfully used
to solve different optimization problems. Hamedmoghadam et
al. [42] proposed a population-based feature selection method,
named OFBO, which builds on the information diffusion
mechanism of the bounded confidence model, searching the
feasible solution space through the opinion formation process.
Sharkawy et al. [43] optimized the selection of input features
based on particle swarm optimization. SVM classifier based
on PSO-based feature selection is proposed for detecting
contaminated particles in transformer oil. To handle the
challenge of the “curse of dimensionality” for evolution-
ary feature selection methods, Song et al. [44] proposed a
new variable-size cooperative coevolutionary particle swarm
optimization algorithm for feature selection. The proposed
algorithm employs the idea of “divide and conquer” in a co-
operative coevolutionary approach, and extensive experiments
indicate the capability of obtaining good feature subsets.
Furthermore, Song et al. [45] proposed a new hybrid feature
selection algorithm using surrogate sample-assisted particle
swarm optimization. Since the whole sample set is replaced
by a small number of surrogate units, the proposed algorithm
significantly reduces the cost of evaluating particles in particle
swarm optimization.

Not only that, for the multi-label feature selection prob-
lem, Liu et al. [46] first constructed a label enhancement
method based on instance information distribution, then
reconstructed a neighborhood rough set model suitable for
label distribution learning and finally proposed a feature-
based forward greedy feature selection algorithm LDRS.
However, LDRS also faces the problem of the relatively high
time complexity of the algorithm.

2.2 Online Streaming Feature Selection Methods

For some real-world applications, features may exist in a
streaming model, and we cannot know the whole feature
space before learning [7, 8, 10]. Therefore, many online feature
selection methods have been proposed to solve the issue of
online streaming feature selection [12].

Specifically, Zhou et al. [18] proposed the Alpha-investing
algorithm, which does not require a global model. However,
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Alpha-investing requires prior knowledge of the feature space
structure to control the process of candidate feature selection
heuristically. Wu et al. [9] proposed an online streaming
feature selection framework, which includes two algorithms:
OSFS and Fast-OSFS. OSFS mainly includes two steps: online
correlation analysis, and online redundancy analysis. The
online correlation analysis is to discard irrelevant features,
and the online redundancy analysis eliminates redundant
features. Yu et al. [23] proposed the SAOLA method for high-
dimensional data by using a pairwise comparison method
based on mutual information theory. Rahmaninia et al.
[47] used a streaming method to evaluate the correlation
and redundancy of features based on mutual information
theory and proposed two online feature selection algorithms,
named OSFSMI and OSFOMI-k. Zhou et al. [14] proposed
a streaming feature selection algorithm SFS-FI considering
the interaction between features, and the number of selected
features increased due to the consideration of the interac-
tion ability between features. Gao et al. [48] proposed a
unified feature selection framework including three low-order
information-theoretic terms for multi-label learning named
Selected Terms of Feature Selection (STFS). The algorithm
is designed primarily for multiple variables while taking into
account high-order variable correlations. Rafie et al. [49] used
mutual information theory and Pareto optimal set theory
to select streaming features using a multi-objective search
strategy to solve the problem that traditional multi-label
feature selection cannot be applied to stream data scenarios.

Most existing streaming feature selection methods are
designed for a single feature type or provide two versions
of algorithms for both categorical and numerical features,
respectively. However, besides the number of streaming fea-
tures in practical applications, their feature type may also
be unknown in advance. Therefore, this paper focuses on
heterogeneous streaming features without the feature type
information.

3 The Proposed Framework

This section describes the formal definition of the problem
and the specific implementation of the proposed method. We
summarize some symbols used in this paper in Table 1.

TABLE 1: Summary on Mathematical Notations

Notations | Definition

D Target dataset

F Feature space

C Class label

[ -] |S|: the size of set S

x5 ith sample

fi jth feature

U Sample space: {z1,z2,...,Zn}

St The selected feature subset after time stamp ¢

MI(+-) MI(f;C): denote the mutual information between
feature f and class label C

3.1 Problem Definition

Definition 1. Online Heterogeneous Streaming Feature Selec-
tion

Suppose F' is the conditional feature space of the target
dataset D, the class label is C, and the sample space is
U = {x1,72,...,2, }, where x; is the i*" sample. For online
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Fig. 2: Taking a parabola as an example, a schematic diagram
of calculating MIC. (a) shows that for each pair (k,I), the
MIC algorithm finds the k-by-l grid with the highest mutual
information. (b) shows the maximum mutual information
matrix M (X;Y") composed of the highest mutual information
value obtained by each pair (k,1).

heterogeneous streaming feature selection, we cannot known
the exact number of |F'| in advance (e.g. |F| — 00). At times-
tamp t, the new arriving streaming feature is f; (f; € F'), and
we do not know the attribute type of f;. Meanwhile, we must
decide whether to retain or discard the new arrival feature on
the fly, and the selected feature subset after timestamp ¢ is S;.
Streaming feature selection aims to maximize the information
of S; at each timestamp while making the size of |S¢| as small
as possible.

Mutual information can measure the amount of informa-
tion shared between S; and C' by measuring their dependency
level [50]. Therefore, in terms of information theory, online
streaming feature selection can be formalized as:

ming, max{MI(Ss; C)}
|S¢| > 0.

Similar to traditional feature selection methods, two main
issues for streaming feature selection can be distinguished:
feature measurement and search strategy [50]. This first one
is to define an appropriate measure function to calculate the
correlation for each new arriving feature. The second issue is
to develop a search strategy that can decide whether retain
or discard each streaming feature. There are many measure
functions, such as Pearson Correlation Coefficient (PCC) [51],
Spearman’s Rank Correlation Coeflicient (SPCC) [52] and
Mutual Information (MI) [34], etc. However, most existing
feature measure functions must know the feature type before
calculation. Therefore, first of all, we need a measure function
to calculate the correlation between unknown type streaming
features.

(1)

s.t.

3.2 Measure Function for Unknown Type Features

MIC has been proved to be an effective measure of the
dependence of two variables and can capture a wide range of
both functional and unfunctional associations [29]. As shown
in Fig.2, MIC divides the variables z,y into k * [ grids over
the whole coordinate system and finds the k-by-l girds with
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the highest mutual information. Meanwhile, the z-axis and
y-axis axes are divided dynamically in the calculation of the
MIC. Therefore, MIC can calculate mutual information for
both numerical and categorical data, making it adaptable to
various applications.

Specifically, given a two-dimensional variable dataset D =
[X,Y] = {(z1,1y1), (x2,y2), -, (Tn, yn) }- The integers (k,1)
can be any pair. The calculation of the MIC(X;Y) is as
follows [29]:

MIC(X;Y) = maz{M(X;Y )}, (2)

. o MI(X;Y|]C’Z)

MX5 Y )kt = log(min{k,l})’ ®)
where MI(X;Y ;) denotes the mutual information value
MI(X;Y) divided according to the integers (k,l) on the
two-dimensional variable dataset D. The size of k and [ when
the party mutual information is the maximum value can be
obtained by the exhaustive method. k x [ < B(n), B is a
function of the sample size n expressed as B(n) = n%-.

MIC can measure the correlation between two variables of
any type. A higher MIC value indicates a strong correlation
between variables, and conversely, a lower MIC value implies
a weak correlation between variables.

Let S = [f1,f2,..-,fn] be an N dimensional feature
vector and C' is the class label. MIC measures the amount
of information shared between S and C' by measuring their
degree of correlation. Denote the joint distribution densities of
S and C' and their marginal distributions by P(S,C), P(S),
and P(C), respectively. The MIC between features and class
label can be defined as follows:

MIC(S;C) = MIC(fy, fay .., fn; C)
P(S,0) (4)
= [ P Oesgigypicyste

Although mutual information measurement [53] has good
theoretical performance, accurate estimation of mutual in-
formation is impossible. Because to compute (5), the es-
timation of P(S,C) is unavoidable, which is an NP-hard
problem. Therefore, several approximations of Eq(5) have
been proposed. The most representative method is the mRMR,
(Minimal Redundancy Maximal Relevance) [54] as

N
C)=> MI(f;C) = — Z Z MI(f;; f).
=1

i=1 j=i+1
(5)

3.3 Seach Strategy for Streaming Features

Unlike traditional feature selection methods that actively
search for optimal features, streaming feature selection can
only passively receive streaming features and decide whether
to retain or discard these features. At each timestamp, the
ultimate goal of unknown type streaming feature selection is
to maximize MIC(S; C).

Suppose at timestamp ¢, the selected feature subset is
S;. It is impossible to calculate the information between a
feature set S; and a class label C directly [29]. Therefore,
a more commonly used approach is to approximate it. To

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

5

propose a new approximation, we formulate the unknown type
streaming feature selection as:

maz{SIQ.S:}, (6)

where (4 is a symmetric information matrix constructed from
the mutual information terms in as:

_2/[]\14(;2*]((1]20) %Mlc(flafN)

Qt: B 17f2) MIC(f?afN) , (7)
—%MIC(fl;fN) MIC(fN;C)

where Sy = [s1, ..., sN]T is the selected feature vector, s; €

{0,1}, and § is a trade-off parameter.

At timestamp t + 1, suppose the new arriving feature is
ft+1, and we add f;41 into the candidate feature subset. That
is, the selected feature subset is Sy11 = [St, fry1]. If

S 1Qus1Si41 > ST QuSt, (8)

then, f;11 can be retained. Otherwise, we should remove f; 1
from Syyq.

Therefore, the condition for judging whether f;1; should
be selected is

StTJrthHStH — S?QtSt > 0. 9)

Definition 2. To determine whether retain or discard the

new arriving feature f; at timestamp ¢, we define the metric
MICgaain as follows:

MICgain(ft, St—1) = MIC(ft;C) —

> MIC(fi; fo),

ISt 1|f€5t 1

(10)
where S;_1 is the selected feature subset at timestamp ¢ — 1,
and C the class label.

Theorem 1. At timestamp ¢ + 1, if MICqqin(fi+1,S:) > 0,
then S,ZL1Qt+1St+1 > StTQtSt

Proof 1. Now let’s start with N = 2 at timestamp to and
approximate the MIC value between the set Sy and the label
C as:

S2

Sy = [51],N:2

MIC(s1;C)

7§MIC(81'82)
= 2 ;
Q2 |:7gMIC'(51;52) ]

MIC(s2;C)

T . B8 .
S;QzSQ _ |:§1:| [ 2410(51,6’) 2MIC(SI,Sz)i| |:81:|
2 —5MIC(s1;52) MIC(s2;C) S2
s1MIC(s1;C) T sy
7%81MIC(51;52)+32MIC(52;C) Sa

= S?MIC(slgC) + ngIC(SQ;C) — Bs1s2aMIC(s1;s2)

Then at timestamp t3, suppose we select f3 and approxi-
mate the MIC value between S5 and C' as:

S1
53: S92 ,N:?)
$3

MIC(sl,C) —BMIC(s1582) —BMIC(s1;83)
Q3 = %MIC(Sl,SQ) MIC(s2;C) —5MIC(s2;53)
—5MIC(s1;53) 7§MIC(52;53) MIC(s3;C)
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S§Q353

$1 T MIC(s1;C)
= |so —EMIC(Sl;SQ)

s3 5MIC(s1;53)

—gMIC(sl;w)
MIC(s2;C)

—§MIC(S1; s3)] [s1
—5MIC(s2;s3) S2
— B MIC(s2;s3)

MIC(s3;C) S3
slMIC(sl;C)fQSQMIC(sl;SQ)f§53MIC(51;53) T s1
= 7§51MIC(51; s2) + soMIC(s2;C) — §53MIC(82;83) s2
7581MIC(51;83)7gSQMIC(Sz;Sg)+53MIC(S3;C) S3

= sfMIC’(sl; C)+ SEMIC(SQ; C)+ ngIC(s?,;C)
— Bs182aMIC(s1;82) — Bs1s3MIC(s1;83) — BsassMIC(sa;83)

Therefore, in terms of (9), we calculate the information
gain as:

5TQ355 — ST Q25
= s%MIC(S3;C) — Bxs183MIC(s1;83) — B * s2s3MIC(s2;s3)

By analogy, we can get

S;TJrthSt-&-l — ST Q¢S
t
= strlMIC’(st_H; C)— ﬁZsisz+1MIC(si;st+1)
i=1

Because s; € {0,1}, s? = s;. Then,
S 1QuSii1 — ST QS

¢
= MIC(5141;C) — BY  MIC(s;;5141)
i=1
In our proposed metric, the variable 3 is set to reciprocal
of the number of selected features. Then,

Stq:i-thSt-‘rl - SthSt = MICGain(ft-‘rla St)

Thus, at timestamp ¢+ 1, if M ICqain(fi+1,S:) > 0, then
SEi—th+1St+1 > STQyS,.

The value of MICgGq;n determines the importance of
newly arrived feature f; to the currently selected subset S;_1
at timestamp t. If MICgqin is greater than 0, the newly
arrived feature is positive for the complete information of the
selected subset; otherwise, the value of M ICgqain is less than
0.

For streaming feature selection, the speed of the algorithm
is critical. Because MIC needs to divide the variables into
multiple grids, the time complexity of MIC is a bit high.
Besides, in practical applications, there are always many
irrelevant or low correlation features.

Definition 3. To speed up the online streaming feature se-
lection, we propose a new metric MI1C¢,, to discard these
irrelevant and low correlation features directly as follows:

1
MICeor(S,C) =

=13 > MIC(fi;0),

fies
where M IC ¢, is the mean correlation of each features in the
currently selected feature subset.

(11)

In other words, M IC¢,, aims to filter out low correlation
features and maximize the correlation of the selected subset

max{MICco(St, C)}. (12)

Corollary 1. For a new arriving feature f;, if MIC(f;;C)
is samller than MICcor(Si—1,C), then it can be discarded
directly.
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Proof 2. Suppose at timestamp ?, the new arriving fea-
ture is f; and the selected feature set is Sy_p. If
MIC(f;C) < MICcor(Si—1,C), the selection of f; will
decrease MICc,,-(St, C).

Let ‘Stfll = Ntfl and MICCOT(St71>C> = COthl.

Then Z MIC(f“C) = Nt—l X OO’/‘t_1. If we add ft
fi€St—1
into S, St = St—l U ft and |St‘ = Nt—l + 1.
MICcor (S, C) = 1 > MIC(f:i;C)
19 /25,
1
= m(]\ft_l x Cori—1 + MIC(ft,C))
1
= COTt_l + m(MIC(ft,C) — COT’t_l)
Because MIC(f;;C) < MICcor(Si-1,C), then

MIC(ft, C) - MICCOT (Stfh C) S 0. Thus,

MICcor(St,C) < MICcor(Si—1,C).

Therefore, to maximize the correlation of the selected
feature subset, we can discard the low correlation streaming
features safely and directly in terms of M ICcoy-.

3.4 The Proposed Algorithm

To sum up, in terms of (10) and (11), we propose a new
online heterogeneous streaming feature selection algorithm
for unknown type streaming features as Algorithm 1.

More specifically, if a new feature f; arrives at times-
tamp t, Steps 5-8 calculates the correlation values between
ft and C, then compares MIC(f;C) to Meang, and
selects the features with high correlation for the further
evaluation processes. Steps 9-12 decide whether the newly
arrived feature f; is important for the candidate feature
subset. If MICgain(ft,S) > 0, which mean the new feature
ft can increase the information of selected feature subset,
we add f; into subset S. With this new online streaming
feature selection algorithm, we can select features with high
correlation and high significance while ignoring the feature
type of each streaming feature. Besides, it is worth mentioning
that our algorithm does not need to set any parameters in
advance.

Algorithm 1 Online Heterogeneous Streaming Feature Selec-
tion (OHSFS)

Input:
F': the condition feature set;
C': the class attributes;
Output:
S the selected feature set;
1: Initialization:S = {};
2: MICcor(S,C):the mean correlation of features in .S, initial-
ized to 0O;

3: Repeat
4 Get a new arriving feature f; at time stamp t;
5: IF MIC(ft;C) < MICcor(S,C)
6: Discard feature fi;
7: Continue;
8: End IF
9: IF MICgqain(ft,S) >0
10: S=5SU{f};
11: End IF

12: Until no more features are available;
13: Output selected features contained in S.
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3.5 Time Complexity

Here is an estimation of the time complexity of the algorithm
OHSFS. Let m and n be the numbers of features and
samples for the target dataset, respectively. When calculating
MI(D,k,l), in order to avoid grid exhaustive cutting, per-
form traversal optimization, and reduce the computational
complexity of the MIC method, the literature [29] proposed a
dynamic programming algorithm to approximate the solution
of the MIC. The number of cycles of equal depth division is
B/2, i is the number of segments for the y — axis. so its
overall complexity is O(i2klB) = O(k?B?). Therefore, we
assume that the time complexity of MIC is constant O(€2).
At time stamp ¢, suppose that the number of selected
features is |S¢|. Steps 5-8 calculate the correlation between
the new streaming feature and the class label, then compare
MIC(f;C) to Meang and select the features with high
correlation. The time complexity of these steps is O(€2). Steps
9-12 calculate the M IC between the new arriving feature and
each selected feature in S. If MICGain(ft,St) > 0, we add
ft into S;. Therefore, the time complexity of steps 9-12 is
O(mx*|S|*Q). In sum, the worst time complexity of OHSFS is
O(m?€) when we select all the streaming features. However,
there are always many low correlation features for real-world
datasets, and it is impossible for all features to increase the
information of the selected feature subset. Thus, the time
complexity of OHSFS will be much smaller than O(m?29Q).

4 Experiments
4.1 Experimental Setup
4.1.1 Datasets

This section applies the proposed online streaming feature
selection method (OHSFS) and competing algorithms on
twenty-one real-world datasets. The details of these datasets
are shown in Table 2 1.

We compare OHSFS with four state-of-the-art traditional
mixed feature selection methods on the first four small
datasets in Table 2. Meanwhile, we compare OHSFS with five
state-of-the-art online streaming feature selection algorithms
on the last sixteen datasets in Table 2. There are three
main reasons for this: 1) The time complexity of these four
traditional mixed feature selection methods is too high to
be applied to high-dimensional datasets. 2) The dimensions
of the first four datasets are too small to match the online
streaming feature selection scenarios. Therefore, we do not
conduct the experimental competition of online streaming
feature selection methods on the first four small datasets. 3)
The first four datasets are mixed, while most of the last sixteen
are single feature types. Our new method can handle mixed
datasets, but the five competing online streaming feature
selection algorithms cannot handle mixed datasets directly.
This is another reason we do not conduct the experimental
competition of online streaming feature selection methods on
the first four small datasets.

4.1.2 Evaluation Metrics

Because our new proposed method and all these competing
feature selection algorithms are implemented in MATLAB, we

Public available at https://archive.ics.uci.edu/, and

http://www.cs.binghamton.edu/ lyu/KDDO08/data/.
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TABLE 2: Real-world Datasets

Dataset instances Features Classes Feature Type
German 1000 20 2 mixed
Heart 303 13 2 mixed
Australian 690 14 2 mixed
FLags 358 29 7 mixed
Dermatology 358 34 6 real
" Arrarrhythmia 452~~~ 279~ 16 = mixed =
LYMPHOMA 62 4026 3 real
SRBCT 63 2308 4 real
DLBCL 7 6285 2 real
CAR 174 9182 11 real
OVARIAN 253 15154 2 real
LEU 72 7129 2 real
PROSTATE 102 6033 2 real
ARCENE 200 10000 2 real
LUNG2 203 3312 5 real
LUNG 181 12533 2 real
SYLVA 216 14394 2 mixed
GISETTE 7000 5000 2 integer
DEXTER 600 20000 2 integer
HIVA 4229 1617 2 categorical
NOVA 1929 16969 2 categorical

use five built-in classifiers, KNN (k = 3), SVM (with the linear
kernel), CART, Ensemble Learning, and Neural Network, in
MATLAB r2023b to conduct the experiments to require the
predictive accuracy and running time for the fairness. We
perform a 5-fold cross-validation on each dataset. Feature
selection is to train on 4/5 of the data samples and test on the
remaining 1/5 of the samples. All competing algorithms use
the same training and test sets. For each dataset, the order
of stream features is random. We run each dataset ten times
and recorded the average prediction accuracy, running time,
and the mean number of features selected on each classifier.

To verify whether the prediction accuracy of OHSFS
and its competitors on different classifiers is significantly
different, we performed the Friedman test at 95% significance
level under the null hypothesis [55]. If the null hypothesis is
rejected, there is a significant difference in the performance
of OHSFS and its competitors. When the null hypothesis of
the Friedman test was rejected, we proceeded to the Nemenyi
test as a post-hoc test [55].

All experimental results are conducted on a PC with AMD
5800X, 3.8 GHz CPU, and 16 GB memory.

4.1.3 Parameter Setting of Competing Algorithms

In this section, we summarize the parameter settings of all
these compared algorithms in our experiments.

We compare OHSF'S with four state-of-the-art traditional
mixed feature selection methods, including e-approximate
reduct [27], IFSM [28], EUIAR [26], and FRUAR [25]. e-
approximate reduct is a fuzzy rough set-based filter-wrapper
model feature selection method. We set € = 0.5 according to
the source code of this algorithm. IFSM is a neighborhood
rough set-based method, and the parameter values & are
considered from [0.1,0.4]. EUTAR is an unsupervised hybrid
feature selection method based on fuzzy complementary
entropy. The parameter value of EUIAR is set to 1 as the
default value from the paper [26]. FRUAR is an unsupervised
hybrid feature selection method based on fuzzy rough sets
that find the optimal subset of features through a heuristic
search algorithm. We set the parameter value of FRUAR to
0.1 as the default value [25].
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Besides, we compare OHSFS with five state-of-the-art
online streaming feature selection algorithms, including a-
investing [18], Fast-OSFS [9], SAOLA [23], OSFSMI [47],
and SFS-FI [14]. a-investing is a streamwise feature selection
algorithm, and we set the two parameters W EALTH and
DELTA ALPHA to 0.5 as the default value from the
paper [18]. Fast-OSFS is an online streaming feature selection
algorithm based on Markov blankets to discard redundant
features quickly, and we set the significance level of a to
0.01 [9]. SAOLA is a scalable and accurate online feature
selection method for ultra-high dimensional datasets, and we
set its parameter to 0.05 [23]. OSFSMI is based on mutual
information theory that does not need specific parameter
values. SF'S-FI is a streaming feature selection algorithm that
considers the interaction between features, and we set its
parameter to 0.05 as the default value [14].

4.2 The effectiveness of MIC e,

We present MICc, to directly discard low correlation
features for speeding up the efficiency of OHSFS. To vali-
date the effectiveness of MICc,,, we perform experiments
between OHSFS(with M IC¢,,) and OHSFS,ocor(without
MICcor) on six datasets, including three low-dimensional
datasets(German, Heart, Australian) and three high-
dimensional datasets (SRBCT, DLBCL,PROSTATE). We
run each dataset ten times and record the average prediction
accuracy, running time, and the mean number of features
selected on each classifier.

TABLE 3: Predictive Accurary Using Different Classifiers

Dataset KNN SVM CART
OHSFS  OHSFS,ocor | OHSFS  OHSFSuocor | OHSFS  OHSFSpoc0r
German 0.7132 0.7084 0.6987 0.7272 0.7155 0.7117
Heart 0.7759 0.8037 0.8130 0.8344 0.7448 0.7763
Australian  0.8399 0.8365 0.8551 0.8551 0.8243 0.8242
SRBCT 0.9607 0.9310 0.9564 0.9730 0.8836 0.8448
DLBCL 0.9107 0.9280 0.9547 0.9640 0.8267 0.8293
PROSTATE  0.8967 0.8833 0.8767 0.8967 0.85 0.82

TABLE 4: Running Time (seconds) and the Mean Number of
Selected Features

Running Time # Seleted Features

Dataset

OHSFS  OHSFSpocor | OHSFS  OHSFSpocor
German 0.0873 0.2353 2.02 3.98
Heart 0.0730 0.1128 6.64 8.12
Australian 0.4444 0.7088 7.28 8.38
SRBCT 0.8209 857.036 18.4 791.88
DLBCL 14.7649 2172.253 144.06 815.68
PROSTATE  6.7207 2208.629 46 335.87

On predictive accuracy, the algorithm without MICg,,
selects more features and is slightly better than the original
algorithm. However, there is a dramatic increase in the run-
ning time for the algorithm without MICg,,. For example,
the running time of OHSFS,,cor is more than 1,000 times
than OHSFS on dataset SRBCT, with a loss of around 0.03%
in predictive accuracy. Therefore, we apply M ICc,, into our
algorithm to speed up the efficiency, with the expense of some
loss in predictive accuracy.
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4.3 OHSFS vs. Traditional Mixed Feature Selection Meth-
ods

In this section, we compare OHSFS with four state-of-the-
art traditional mixed feature selection methods including e-
approximate reduct [27], IFSM [28], EUIAR [26], and FRUAR
[25]. All algorithms are implemented in MATLAB. Since the
extremely long running time of these four algorithms on high-
dimensional datasets, we only conduct the experiments on the
first five small datasets as shown in Table 2.

Tables 5-9 summarize the predictive accuracy on different
classifiers, the running time, and the mean number of selected
features of these competing algorithms. The p-values of
Friedman test on KNN, SVM, CART, running time and
the mean number of selected features are 0.221e-05, 0.366e-
05, 0.0038, 0.113e-09 and 0.0271 respectively. Thus, there is
a significant difference between OHSFS and the other four
competing algorithms on predictive accuracy, running time,
and the mean number of selected features. According to the
Nemenyi test, the value of CD is 2.7294. Fig. 3 shows the
statistical test of these competing algorithms in cases of KNN,
SVM, and CART.

TABLE 5: Predictive Accuracy Using KNN as the Classifier

Dataset IFSM e-approximate ~ EUIAR FRUAR OHSFS
German 0.6436(3) 0.6981(2) 0.613(4)  0.5083(5) 0.7009(1)
Heart 0.7519(1) 0.747(2) 0.5478(4)  0.5341(5)  0.7241(3)
Australian 0.7625(3) 0.8308(1) 0.4449(5) 0.6194(4) 0.8287(2)
Flags 0.4098(2) 0.3726(4) 0.3742(3)  0.3516(5)  0.5649(1)
Dermatology  0.8411(3) 0.9632(1) 0.3617(4)  0.3475(5)  0.9466(2)
AVG. 0.6818 0.7222 0.4683 0.4722 0.753
AVG. RANKS 2.4 2 4 4.8 1.8

TABLE 6: Predictive Accuracy Using SVM as the Classifier

Dataset IFSM e-approximate ~ EUIAR FRUAR OHSFS
German 0.7(3) 0.7344(1) 0.6996(4)  0.3897(5) 0.7035(2)
Heart 0.7837(2) 0.8107(1) 0.7056(4)  0.4822(5) 0.7563(3)
Australian 0.7897(3) 0.8551(1) 0.4449(5)  0.8191(4) 0.8551(1)
FLags 0.4005(1) 0.3711(2) 0.3366(3)  0.2892(5)  0.302(4)
Dermatology ~ 0.8651(3)  0.9595(1)  0.4539(4) 0.2078(5) 0.9407(2)
AVG. 0.7078 0.7462 0.5281 0.4556 0.7115
AVG. RANKS 2.6 1.3 4 4.6 2.5

TABLE 7: Predictive Accuracy Using CART as the Classifier

Dataset IFSM e-approximate ~ EUIAR FRUAR OHSFS
German  0.6277(4)  0.6854(3)  0.6922(2) 0.5794(5) 0.7046(1)
Heart 0.747(2) 0.7848(1)  0.6974(3) 0.6004(5) 0.6974(3)
Australian  0.761(3) 0.8475(1)  0.4464(5) 0.7129(4)  0.832(2)
FlLags 0.5007(2)  0.4484(3) 0.339(5)  0.4346(4) 0.5428(1)
Dermatology ~ 0.8612(3)  0.9316(1)  0.4419(5) 0.8084(4) 0.9111(2)
AVG. 0.6995 0.7395 0.5234 0.6271 0.7376
AVG. RANKS 2.8 1.8 4.1 4.4 1.9
TABLE 8: Running time(seconds)
Dataset IFSM e-approximate ~ EUIAR FRUAR OHSFS
German  0.1102(1)  2.7083(3)  7.2998(4) 342.2607(5) 0.2638(2)
Heart 0.0041(1)  0.0574(2)  0.1413(4)  1.9774(5)  0.1096(3)
Australian  0.0179(1)  0.6145(2)  1.4561(4) 105.0164(5) 0.7406(3)
FLags 0.0127(2)  0.1685(3)  1.8246(4)  3.6457(5)  0.0122(1)
Dermatology ~ 0.0422(1) 0.5662(3) 3.4394(4)  21.4266(5)  0.0747(2)
AVG. 0.03742 0.823 2.8322 94.8654 0.2402
AVG. RANKS 1.2 2.6 4 5 2.2

From Tables 5-9, we can observe that:
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Fig. 3: The statistical test graph of OHSFS vs. traditional mixed feature selection algorithms

TABLE 9: The mean number of selected features

Dataset IFSM  e-approximate EUIAR FRUAR OHSFS
German 9.04(3) 11.58(4) 3(2) 16.2(5) 2(1)

Heart 4.46(2) 6(4) 3(1)  11.66(5) 5.22(3)
Australian 6.62(3) 6(2) 3(1) 12.76(5) 7(4)
FLags 7.88(4) 9.28(5) 3(2)  6.86(3)  1(1)

Dermatology 8.2(2) 17.96(4) 3(1) 13.66(3)  20.52(5)
AVG. 7.24 10.164 3 12.228 7.148
AVG. RANKS 2.8 3.8 1.4 4.2 2.8

e OHSFS vs. IFSM: OHSFS gets higher average predictive
accuracy and lower average ranks than IFSM in cases of
KNN, SVM, and CART. IFSM is faster than OHSFS
in running time and selects almost the same average
number of features. IFSM is a neighborhood rough set-
based incremental feature selection method to handle
the dynamics of an object set that involves the change
of a single object and multiple objects. Since the time
complexity of the rough set model is square to the number
of instances, IFSM is not capable of handling large
datasets. Besides, IFSM needs to know the corresponding
feature types before learning and can only handle static
datasets.

e OHSFS vs. e-approximate: There is no significant differ-
ence between OHSFS and e-approximate on predictive
accuracy. The predictive accuracy of e-approximate is
slightly better than that of OHSFS in cases of SVM and
CART but worse in the case of KNN. e-approximate is
a supervised mixed feature selection algorithm based on
fuzzy rough sets. e-approximate can define corresponding
fuzzy relationships for different features, which requires
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knowing the feature types before learning. Meanwhile,
the time complexity of the e-approximate is very high
and unsuitable for processing high-dimensional datasets.

o OHSFS vs. EUIAR: OHSFS performs better than EU-
IAR on predictive accuracy in cases of these three
classifiers. Meanwhile, OHSFS is faster than EUIAR in
running time. EUTAR is an unsupervised mixed feature
selection algorithm based on fuzzy rough sets and selects
the fewest features that may lead to the loss of some criti-
cal information. Besides, EUIAR requires two thresholds
to be given before feature selection to control the radius
and the number of selected features. On the contrary, it
is challenging to specify parameter values for streaming
feature selection before learning.

o OHSFS vs. FRUAR: FRUAR performs the worst on pre-
dictive accuracy among all these competing algorithms.
Meanwhile, there is a significant difference between
OHSFS and FRUAR in the case of KNN. FRUAR uses
fuzzy rough sets to define the importance of individual
features. The time complexity and space complexity
of fuzzy rough sets based algorithms are very high.
Therefore, the running time of FRUAR is much higher
than other comparison algorithms.

In sum, OHSFS is competing on the predictive accuracy
compared to the four traditional feature selection methods on
six mixed datasets. Three comments must be explained: 1)
Traditional feature selection methods can often require the
datasets to select the optimal features according to different
measurements and strategies. However, OHSFS is an online
streaming feature selection method that can require the
datasets only once and decide whether to retain or discard
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the streaming features on the fly. 2) Traditional feature TABLE 11: Predictive Accuracy Using SVM as the Classifier

selection methods spend much more time on running time

Dataset a-investing  Fast-OSFS  SAOLA  OSFSMI SFS-FI ~ OHSFS
than OHSFS. Due to exceptionally long running time, these Arrarrhythmia  0.6022 05416 0.6613  0.6153  0.6422  0.6696
competing traditional mixed feature selection methods cannot LYMPHOMA  0.7583 07333 0.9817  0.8867  0.9883  0.98

. . . . " SRBCT 0.8029 0.6091 09659  0.8414 09625 0.9515
handle high-dimensional datasets. 3) Traditional feature selec- DLBCL 07987 0.7733 0032 08453 09133  0.9547
tion methods need information on each feature in the datasets CAR 0.6233 03144 09115  0.6335 08822 0.8713

: : : OVARIAN 0.977 0.9633 09806 09727 09652  0.9822

fore learning. Nevertheless, for streaming f res in real-
before lea 1ng. evert e'ess, 1o f’t caming features ca LEU 0.8414 0.8543 09614 09571 094  0.9657
world applications, the information on feature type may PROSTATE 0.819 0.854 0.866 0896  0.867  0.893
not be required. Therefore, compared to traditional feature ARCENE 0.7015 0.657 0.645 0676 0639  0.7215
. . L. . . LUNG2 0.8776 0.8023  0.9448  0.8498  0.9472  0.9433
selection methods, OHSFS is better in line with practical LUNG 0.9767 09472 09933  0.9806  0.9806  0.9917
application needs. SYLVA 0.9914 0.9898 09835 09845 09403  0.9903
GISETTE 0.9602 0.862 0.9002  0.8988  0.8925  0.9035
DEXTER 0.8602 0.6407 08542 0.6108  0.643  0.8697
4.4 OHSFS vs. Online Streaming Feature Selection Methods HIVA 0.9639 0.965 09646 09282  0.9648  0.9649
. . . NOVA 0.7656 0.7657 07579 0706 07211  0.7754
In this section, we compare OHSFS with five state-of-the- VG 0.83%5 07671 089. 08300 08681 00018
art online streaming feature selection algorithms including AVG. RANKS  3.9375 49375 26875  4.0938  3.5313 18125

a-investing [18], Fast-OSFS [9], SAOLA [23], OSFSMI [47],
and SFS-FI [14] 2. We conduct the experiments on sixteen TABLE 12: Predictive Accuracy Using CART as the Classifier

high-dimensional datasets as shown in Table 2. Since most of

R Dataset a-investing  Fast-OSFS  SAOLA  OSFSMI SFS-FI  OHSFS
these datasets are numerical features, we randomly selected Arrarthythmia  0.5091 05416 0.6307 05924 0.6129  0.5962
50% of the features and discretized these features into ten LYMPHOMA 0.71 0.7283 084 08117 0.7917 08583

| parts. Th 1 . tal dataset ixced foat SRBCT 0.7408 06238 08021 07744 08159  0.8481
equal parts. Thus, all experimental datasets are mixed feature DLBCL 0.764 0.7613 0.814 0.816  0.7893  0.84
types for our new method. Meanwhile, because these five CAR 0.4704 0.3 0.657  0.5626  0.6753  0.6792
competing algorithms cannot handle mixed features, we use OVARIAN 0.9498 0-949 0-919  0.958 ~ 0.9163  0.9663
. : " . ; . LEU 0.8157 0.8629 0.88 09143 0.8043  0.8614
their categorical version algorithms in experimental, and the PROSTATE 0.784 0.829 0.857 0.88 0783  0.833
datasets are equidistantly discretized into two intervals. All ARCENE 0.6835 0.6685 0.642 06255 06465 0.7215
. . . LUNG2 0.7853 0.7551 08214  0.7883  0.8205  0.8381
algorithms are implemented in MATLAB. LUNG 0.94 09206 09483  0.9517  0.9033  0.9394
Fig. 4 shows graphically the predictive accuracy of these SYLVA 0.9877 0.9873 09818  0.9822 09351  0.9877
competing algorithms on five different classifiers. Table 10- GISETTE 0.9376 09124 0.8984  0.9209  0.9201 ~ 0.9106
: o . . DEXTER 0.8435 0.653 0.829  0.8088  0.6497  0.8457

16 summarize the predictive accuracy, the running time and HIVA 0.9656 0.9655 0.9665  0.9531 09647  0.9654
the mean number of selected features of these competing NOVA 0.7628 0.7637 07576 0.7188  0.7207  0.7532
. . AVG. 0.7906 07639 08324 08162  0.7974  0.8403
algorlthms. The p-values of Friedman test on KNN, SVM, AVG. RANKS 3.7188 4.375 2.75 3.5 4.3125  2.3437

CART, Ensemble Learning, Neural Network, running time,

and the mean number of selected features are 0.3502e- TABLE 13: Predictive Accuracy Using Ensemble Learning as
05, 0.5997e-05, 0.0101, 9.6416e-08, 0.0074, 0.2735e-14, and  the Classifier

0.485e-07 respectively. Thus, there is a significant difference

between these Competing algorithms on predictive accuracy, Dataset a-investing  Fast-OSFS  SAOLA  OSFSMI SFS-FI  OHSFS
. . . Arrarthythmia  0.5449 0.5407 0.6662  0.6727  0.6836  0.6398
running time and number of selected features. According to LYMPHOMA 0.805 0715 0.9667 0875 09483  0.985
the Nemenyi test, the value of CD is 1.8848. Fig. 5 shows the SRBCT 0.8408 0.5898 09473 0.8635  0.9666  0.9558
statistical test of these competing algorithms in cases of KNN, DLBCL 0.8293 0.7773 0.8973  0.8573 0856 0.876
. CAR 0.6197 0.2547 0.8674  0.6114  0.8427  0.8427

SVM, CART, Ensemble Learning, and Neural Network. OVARIAN 0.9806 0.9596 0.9869  0.9747  0.9727  0.9853
LEU 0.89 0.8757 09714 09657 09171  0.9671

TABLE 10: Predictive Accuracy Using KNN as the Classifier PROSTATE 0.813 0.8 0919 0906 0847  0.92
ARCENE 0.73 0.7035 07245 6815 0713  0.7835

Dataset a-investing  Fast-OSFS  SAOLA OSFSMI  SFS-FI  OHSFS LUNG2 0.8577 0.7743 0.9236 08518 09186  0.926
Arrarthythmia  0.5527 0.1958 0.608 05696  0.6133  0.6309 LUNG 0.9756 09411 0.9922 0.9728  0.9489  0.9939
LYMPHOMA 0.74 0.7483 09767  0.9017  0.9867  0.98 SYLVA 0.9916 09905 09849 0.985  0.9404  0.9909

SRBOT 0.7762 06183 00631 08176 0.9011  0.9641 GISETTE 0.9733 0.9589 09059  0.9637 0934  0.9434
DLBCL 07853 0.756 09267 07173 092 09187 DEXTER 0.8375 0.8048 08452  0.8817  0.5885  0.9062

CAR 0.6117 0.2764 0.9068  0.6041  0.8225  0.8741 HIVA 0-9667 0.9658 09668 0.9676  0.9647  0.9663
OVARIAN 0.9723 09653 09774 09519 09253  0.9822 NOVA 077 07632 07592 07798  0.718  0.79%

LEU 0.8057 0.8714 09643 09543 09514 097 AVG. 0.8391 0.7759 0.8953  0.8631  0.8600  0.9079
PROSTATE 0.801 0.837 0.891 0.875 0.87 0.9 AVG. RANKS 3.63 531 2.69 344 416 178
ARCENE 0.709 0.671 0.6415  0.6805  0.656  0.7785
LUNG2 0.8678 0.7881 09541  0.8376  0.9565  0.9564
3 03R4 1035 C 3 96. C . . . . . .

Sng/i gzgzz gg’ggf 83;;‘15 gé?i? &;%55 009:7’9 o OHSFS ws. a-investing: a-investing is an adaptive com-
GISETTE 0.9542 0.8892 0.9006  0.6883  0.9341  0.9109 plexity penalty method that can dynamically adjust the
DEXTER 0.8218 0-6338 0818 05002 06352 0.8068 threshold on the error reduction required for adding a

HIVA 0.9656 0.9655 0.9658  0.9639  0.9647  0.9657 . o .

NOVA 0.6685 0.6976 06025 07151 05834  0.7561 new feature. Based on the penalized likelihood ratio, a-

AVG. 0.8115 0.74 0.8794  0.7957 08513  0.8983 investing has an advantage in not requiring the multiple

AVG. RANKS  3.8125 4.75 2.625 4375 3.6875 175

retraining of the model. According to the statistical test
results, OHSFS performs significantly better than a-
investing in predictive accuracy in cases of KNN and
2 Public  available at  https://github.com/kuiy/LOFS,  and SVM. On the classifiers of CART, Ensemble Learning,

https://github.com/doodzhou/OSFS. and Neural Network, OHSFS gets much lower average

From Figs. 4-5 and Tables 11-16, we can indicate that:

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.
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Fig. 4: Predictive accuracy of these competing algorithms with five classifiers

ranks on predictive accuracy. Besides, OHSFS gets much
higher average predictive accuracy than a-investing with
all these five classifiers. a-investing does not handle
redundancy between features and selects fewer features
on sparse datasets. Therefore, OHSFS performs better

© 2024 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

than a-investing in predictive accuracy. On running time,
a-investing is the shortest among these competing algo-
rithms. a-investing dynamically decides which features
to generate and add to the feature stream, which pro-
vides potentially significant savings in computation. In
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Fig. 5: The statistical test graph of OHSFS vs. online streaming feature selection algorithms
TABLE 14: Predictive Accuracy Using Neural Network as the TABLE 15: Running time(seconds)
Classifier
Dataset a-investing  Fast-OSFS SAOLA OSFSMI  SFS-FI OHSFS
Dataset __ a-investing _ Fast-OSFS _SAOLA _OSFSMI__SFS-FI__ OHSFS ‘;3;;;33‘;‘: ot o S e A
Arrarrhythmia 0.54 0.5489 0.5444  0.5378  0.5444  0.5422 ¥ o : : : : o
; SRBCT 0.0286 1.1187 0.2155  0.2059  4.3432  0.8469
LYMPHOMA 0.6833 0.6833 0.8833  0.9167 0.95 0.95 DLBOL 01387 59935 09323 10585 L2055 134415
SDI?J];%{ 8;2?3 gg?g‘; g'iiii g‘izii 067;32 8‘2323 CAR 0.5461 7.1761 6.3320 12339  241.2094  46.9425
CAR 0'402’r 0'28’22 o';1l7:°, o r23 04020 0.5516 OVARIAN 1.3392 14.6532  0.9837 127006  13.8304  44.3455
e - - - : 09 LEU 0.195 3.4568 0.2511  0.7164  21.8869  16.0849
OVARIAN 0.9881 0.9569 0.9802  0.9645 0A91‘76 0.9842 PROSTATE 01318 9.0869 0172 06655 06187 6.9797
LEU 0.8571 0.7857 0-9&:’7 0~9439 09459 0.9857 ARCENE 0.4637 5.4661 02295 124.8731  1.2078  54.5846
PROSTATE 0.82 0.89 0.85 0.85 0.85 0.93 LUNG2 0.1436 32084 22243 04246  7.8362  132.6171
ARCENE 0.61 0.67 0.66 0.575 0.615 0.7 LUNG 1.0266 8.4202 17554 17922 34119  43.809
LUNG2 0.8219 0.7826 0.8131  0.8175  0.9156  0.9166 SYLVA 0.2746 132.0478 00735 34580 01433  114.0287
LUNG 0.9667 0.9611 0.9944 09556  0.9556  0.9889 GISETTE 58.9935 386.4437  1.1407  778.7647 16.4794  849.6236
SYLVA 0.9385 0.9357 0.9385 0.989 0.9387  0.9385 DEXTER 2.4291 8.7344 0.3374  2092.413  1.3195  20.5311
GISETTE 0.6907 0.6464 0.7353 0.4961 0.7314  0.6304 HIVA 0.3153 3.9962 0.1456 63.2055 0.2396 14.6994
DEXTER 0.8467 0.8283 0.8083 04717  0.6467  0.84 NOVA 2.5189 20.0557  0.5917  3550.695  1.1994  72.2485
HIVA 0.9631 0.9674 0.9676 0.9544  0.9648  0.9659 AVG. 4.2886 37.7128 0.9755  414.5581  18.6459  92.4521
NOVA 0.7787 0.7777 0.7564 0.7148 0.7268 0.7668 AVG. RANKS 1.75 4.5625 1.8125 3.8125 3.5625 5.5
AVG. 0.7786 0.7592 0.8282  0.7765  0.7949  0.8489
AVG. RANKS 3.97 4.03 2.75 4.31 3.75 2.19

contrast, OHSF'S uses MIC to calculate the information
between two arbitrary types of stream features, which is
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TABLE 16: The mean number of selected features

Dataset a-investing  Fast-OSFS  SAOLA OSFSMI  SFS-FI ~ OHSFS
Arrarrhythmia 5.56 3 21.32 100.14 80.22 21.78
LYMPHOMA 6.04 2 166.52 17.08 240.64 319.46

SRBCT 6.62 2 56.4 9.98 664.98 20.8

DLBCL 11.24 2.06 60.7 25.12 51.52 142.54

CAR 24.16 2 308.06 9.4 6042.7 109.8
OVARIAN 32.92 2.96 32.82 73.48 207.68 45.52
LEU 16 2 43.82 7.18 7772 164.6
PROSTATE 10 2.14 22.74 8.3 21.42 47.96
ARCENE 10.08 3.02 27.08 2232.44 22.64 35.88

LUNG2 20.12 3 322.42 12.1 432.22 170.1

LUNG 34.38 3.2 283.38 9.22 52.78 96.46

SYLVA 37.48 14.44 9.64 95.72 2.64 16.9

GISETTE 297.98 10.14 20.58 1882.28 48.94 70.76
DEXTER 12.74 2.1 32.2 15024.46 22.24 87.7
HIVA 25.76 4.94 5.6 809.5 1.66 8.6
NOVA 15.46 6.3 11.04 11005.92 2.38 163.4
AVG. 35.4212 4.0813 89.02 1957.645 520.7738  95.1413
AVG. RANKS 3.0625 1.25 3.875 4.125 3.9375 4.75

very time-consuming.

e OHSFS ws. Fast-OSFS: Fast-OSFS aims to select
strongly relevant and non-redundant features from
streaming features. Two key components (online rele-
vance analysis and online redundancy analysis) ensure
the effectiveness of the OSF'S framework. Fast-OSFS is an
enhanced method based on OSFS that can significantly
improve selection efficiency during redundancy analysis.
There is a significant difference between OHSFS and
Fast-OSFS on predictive accuracy in cases of KNN, SVM,
CART, and Ensemble Learning. Meanwhile, OHSFS
gets more than 10% higher average predictive accuracy
than Fast-OSFS with all these five classifiers. Fast-OSFS
selects the fewest features among all these competing
algorithms that may lead to the loss of important infor-
mation and lower prediction accuracy. Therefore, OHSFS
performs much better than Fast-OSF'S in predictive accu-
racy. On running time, Fast-OSFS is faster than OHSFS
due to the time savings during redundancy analysis.

o OHSFS vs. SAOLA: SAOLA is designed for extremely
high-dimensional data. By employing novel pairwise
comparison techniques and maintaining a parsimonious
model over time online, SAOLA is scalable on datasets
and can run very fast. SAOLA has two versions (based
on Fisher’s Z-test and Mutual Information respectively)
for continuous and discrete streaming features. On pre-
dictive accuracy, SAOLA performs better than our al-
gorithm OHSFS in cases of KNN and SVM according
to the average ranks of each classifier. OHSFS per-
forms better than SAOLA in CART, Ensemble Learning,
and Neural Network cases. Meanwhile, OHSFS achieves
higher average predictive accuracy than SAOLA in all
these five classifiers. SAOLA and OHSFS select almost
the same number of features. Thus, these experimental
results indicate the superiority of the selected features
by OHSFS in predictive accuracy. On running time,
SAOLA is much faster than OHSFS. To deal with the
heterogeneous new streaming features, we use MIC to
calculate the information between different streaming
features and do not need to know the feature type
information. However, MIC is very time-consuming to
get the maximum value by the exhaustive search.

e OHSFS wvs. OSFSMI: OSFSMI employs the mutual
information concept in a streaming manner to evalu-
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13

ate the correlation between features. OSFSMI aims to
select informative features by removing redundant and
irrelevant features and does not employ any adjustable
user-defined parameters. OHSFS performs significantly
better than OSFSMI in cases of KNN and SVM. On
CART, Ensemble Learning, and Neural Network, OHSFS
gets higher predictive accuracy on average and lower
average ranks than OSFSMI. On running time, OSFSMI
is speedy on some datasets. Meanwhile, OSFSMI spends
the most time on other datasets, such as ARCENE,
DEXTER, and NOVA. OSFSMI selects the most features
on average among these competing algorithms. Thus,
the performance of OSFSMI varies widely on different
datasets, which indicates its poor adaptability.

o OHSFS wvs. SFS-FI: SFS-FI aims to account for feature
interaction during streaming feature selection. Based on
the metric of interaction gain, SFS-FI can select relevant
and interactive streaming features on the fly. SFS-
FI applies Fisher’s Z-test and Mutual Information for
continuous and discrete streaming features to compute
the relationship between features, respectively. OHSFS
performs significantly better than SFS-FI on KNN and
CART. In the case of SVM, Ensemble Learning, and Neu-
ral Network, OHSFS achieves higher average prediction
accuracy and lower average ranks than SFS-FI. Since
the interaction between features is considered, SFS-FI
selects, on average, many more features than OHSFS.
Therefore, the features selected by OHSFS are superior
to those chosen by SFS-FI. In terms of running time,
SFS-FI is faster than OHSFS. SFS-FI also uses mutual
information to select features but cannot handle mixed
features and features of unknown type.

In sum, OHSFS achieves the highest predictive accuracy
and lowest average ranks among these competing algorithms
on these datasets. The superiority of OHSFS lines in two
aspects: 1) In terms of MIC, OHSFS can treat mixed features
in a uniformed framework that decreases the information loss
during online feature selection; 2) The two metrics M ICgqin
and MIC¢,, ensure the effectiveness and efficiency of
OHSFS. Meanwhile, most existing streaming feature selection
methods cannot handle heterogeneous streaming features
directly. In real-world applications, the streaming features
can arrive in a random order. Therefore, it is unrealistic to
know the feature type for the next arriving streaming feature
before learning. Since OHSFS is nonparametric and does not
need to know the feature type of each streaming feature in
advance, it is better in line with practical application needs.

5 CONCLUSION

This paper proposes a novel online adaptive feature selection
method to address heterogeneous streaming features without
the feature type information in advane, which is more in
line with practical applications. First, we model the issue of
online heterogeneous streaming feature selection as a minimax
problem. Then, in terms of MIC which can measure the corre-
lation between arbitrary types of streaming features, we derive
two new metrics that aim to select informative and compact
features. Meanwhile, we proof the effectiveness of efficiency of
these two metrics. Finally, extensive experiments demonstrate
the effectiveness of our new proposed method compared to
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four traditional mixed feature selection algorithms and five
online streaming feature selection methods. However, the time
complexity of OHSFS is high due to the calculation of MIC. In
future work, we will focus on an online distributed streaming
feature selection method that can process multiple streaming
features concurrently in a distributed manner.
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